50 research outputs found

    Quantum computing and the brain: quantum nets, dessins d'enfants and neural networks

    Full text link
    In this paper, we will discuss a formal link between neural networks and quantum computing. For that purpose we will present a simple model for the description of the neural network by forming sub-graphs of the whole network with the same or a similar state. We will describe the interaction between these areas by closed loops, the feedback loops. The change of the graph is given by the deformations of the loops. This fact can be mathematically formalized by the fundamental group of the graph. Furthermore the neuron has two basic states ∣0⟩|0\rangle (ground state) and ∣1⟩|1\rangle (excited state). The whole state of an area of neurons is the linear combination of the two basic state with complex coefficients representing the signals (with 3 Parameters: amplitude, frequency and phase) along the neurons. Then it can be shown that the set of all signals forms a manifold (character variety) and all properties of the network must be encoded in this manifold. In the paper, we will discuss how to interpret learning and intuition in this model. Using the Morgan-Shalen compactification, the limit for signals with large amplitude can be analyzed by using quasi-Fuchsian groups as represented by dessins d'enfants (graphs to analyze Riemannian surfaces). As shown by Planat and collaborators, these dessins d'enfants are a direct bridge to (topological) quantum computing with permutation groups. The normalization of the signal reduces to the group SU(2)SU(2) and the whole model to a quantum network. Then we have a direct connection to quantum circuits. This network can be transformed into operations on tensor networks. Formally we will obtain a link between machine learning and Quantum computing.Comment: 17 pages, 3 Figures, accepted for the proceedings of the QTech 2018 conference (September 2018, Paris

    Differential Structures - the Geometrization of Quantum Mechanics

    Full text link
    The usual quantization of a classical space-time field does not touch the non-geometrical character of quantum mechanics. We believe that the deep problems of unification of general relativity and quantum mechanics are rooted in this poor understanding of the geometrical character of quantum mechanics. In Einstein's theory gravitation is expressed by geometry of space-time, and the solutions of the field equation are invariant w.r.t. a certain equivalence class of reference frames. This class can be characterized by the differential structure of space-time. We will show that matter is the transition between reference frames that belong to different differential structures, that the set of transitions of the differential structure is given by a Temperley-Lieb algebra which is extensible to a C∗C^{*}-algebra comprising the field operator algebra of quantum mechanics and that the state space of quantum mechanics is the linear space of the differential structures. Furthermore we are able to explain the appearance of the complex numbers in quantum theory. The strong relation to Loop Quantum Gravity is discussed in conclusion.Comment: ReVTeX4, 13 pages, 2 figures,major corrections in the definition of the singular form, the trace and the complex structur

    Dark energy and 3-manifold topology

    Full text link
    We show that the differential-geometric description of matter by differential structures of spacetime leads to a unifying model of the three types of energy in the cosmos: matter, dark matter and dark energy. Using this model we are able to calculate the ratio of dark energy to the total energy of the cosmos.Comment: 7 pages, no figure
    corecore